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Abstract
In an alternative interpretation, the Seiberg–Witten map is shown to be induced
by a field-dependent coordinate transformation connecting non-commutative
and ordinary spacetimes. Furthermore, following our previous ideas, it has been
demonstrated here that the above (field-dependent coordinate) transformation
can occur naturally in the Batalin–Tyutin extended space version of the
relativistic spinning particle model (in a particular gauge). There is no need to
postulate the spacetime non-commutativity in an ad hoc way: it emerges from
the spin degrees of freedom.

PACS numbers: 02.40.Gh, 11.10.Ef, 11.90.+t

As a natural generalization of the phase space non-commutativity (NC) in quantum mechanics,
NC in spacetime was originally introduced by Snyder [1] as a regularization to tame the
short-distance singularities, inherent in a quantum field theory (QFT). This is because NC
in spacetime can introduce a lower bound in the continuity of spacetime, just as h̄ does in
the phase space in quantum mechanics. The advantage of NC as a regularization is that the
computational scheme requires very little change from the ordinary spacetime and in some
forms of NC [1] (for more recent works, see [2–4]), manifest Lorentz invariance can be
maintained. However, due to the advent of renormalization techniques in QFT, Snyder’s idea
[1] did not gain much popularity. Also, now we know [5] that the NC prescription does not
quite render a well-defined QFT, as was envisaged somewhat naively.

In more recent times, existence of non-commutativity in (open) string boundaries in
the presence of a constant 2-form Neveu–Schwarz field, and the resulting non-commutative
quantum field theory (NCQFT) in the branes to which the open string endpoints are attached,
have rekindled interest [5] in the physics of non-commutative spacetime. Seiberg and Witten
[6] have shown that the appearance of NCQFT is dependent on the choice of regularization and
in fact a QFT in ordinary spacetime and an NCQFT can both describe the same underlying QFT.
Concretization of this idea has lead to the celebrated Seiberg–Witten map (SWM) [6] which
plays a pivotal role in our understanding of the NCQFT by directly making contact between
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NCQFT and QFT in ordinary spacetime via the SWM. At least to the lowest non-trivial order
in θµν , the non-commutativity parameter,

[xµ, xν] = iθµν (1)

the SWM can be exploited to convert an NCQFT to its counterpart living in ordinary spacetime,
in which the effects of non-commutativity appear as local interaction terms, supplemented by
θµν . In the more popular form of NCQFT, θµν is taken to be constant. This can lead to
very striking signatures in particle physics phenomenology in the form of Lorentz symmetry
breakdown, new interaction vertices, etc [7].

However, as it stands, the SWM is linked exclusively to NC gauge theory, since the
original derivation of the SWM [6] hinges on the concept of identifying gauge orbits in NC
and ordinary spacetimes. In the explicit form of the SWM [6], the non-commutativity of the
spacetime in which the NC gauge field lives, is not manifest at all since the map is a relation
between the NC and ordinary gauge fields and gauge transformation parameters, all having
ordinary spacetime coordinates as their arguments.

On the other hand, possibly it would have been more natural to consider first a map
between NC spacetime and ordinary spacetime and subsequently to induce the SWM through
the change in the spacetime argument of the gauge field from the ordinary to NC one. Precisely
this type of a geometrical reformulation of the SWM is presented in this paper.

In the canonical quantization prescription, the Poisson bracket algebra is elevated to
quantum commutator algebra by the replacement

{A,B} → 1

i
[Â, B̂].

But the presence of constraints may demand a modification in the Poisson bracket algebra,
leading to the Dirac bracket algebra [8], which are subsequently identified with the
commutators

{A,B}DB → 1

i
[Â, B̂].

However, complications can arise in this formalism (particularly in the case of nonlinear
constraints), where the Dirac bracket algebra itself becomes operator valued. To overcome
this, Batalin and Tyutin [9] have developed a systematic scheme in which all the physical
variables are mapped in an extended canonical phase space, consisting of auxiliary degrees of
freedom besides the physical ones, with all of them enjoying canonical free Poisson bracket
algebra. In this formalism, the ambiguity of using (operator-valued)Dirac brackets as quantum
commutators does not arise.

In the spinning particle model [10] the canonical {xµ, xν} = 0 Poisson bracket changes
to an operator-valued Dirac bracket,

{xµ, xν}DB = −Sµν

M2
(2)

due to the presence of constraints. In the above, the dynamical variable Sµν represents the
spin angular momentum and M is the mass of the particle. This forces us to exploit the
Batalin–Tyutin prescription [9].

In a recent paper [3], we have constructed a mapping of the form

{xµ, xν} = 0 xµ → x̂µ {x̂µ, x̂ν} = θµν (3)

which bridges the gap between non-commutative and ordinary spacetimes. Note that x̂µ lives
in the Batalin–Tyutin [9] extended space and is of the generic form x̂µ = xµ + Xµ, where Xµ

consists of physical and auxiliary degrees of freedom. Explicit expressions for Xµ are to be
found later [3].
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This spacetime map induces in a natural way the following map between non-commutative
and ordinary degrees of freedom,

λ(x) → λ(x̂) → λ̂(x) Aµ(x) → Aµ(x̂) → Âµ(x). (4)

Here λ̂ and Âµ are the NC counterparts of λ and Aµ, the Abelian gauge transformation
parameter and the gauge field respectively and x̂µ and xµ are the NC and ordinary spacetime
coordinates.

On the other hand, there also exists the SWM [6] which interpolates between non-
commutative and ordinary variables,

λ(x) → λ̂(x) Aµ(x) → Âµ(x). (5)

It is only logical that the above two schemes ((3)–(4) and (5)) can be related. In the
present work we have precisely done that. The formulation [3] (3)–(4) being the more general
one, we have explicitly demonstrated how it can be reduced to the SWM [6], in a particular
gauge. This incidentally demonstrates the correctness of the procedure. The above idea was
hinted in [3]1.

In this context, let us put the present work in its proper perspective. Recently a number
of works [11] have appeared with the motivation of recovering the SWM in a geometric way,
without invoking the gauge theory principles. However, the non-commutative feature of the
spacetime plays no direct role in the above-mentioned rederivations of the SWM, with non-
commutativity just being postulated in an ad hoc way. In the present work, we have shown how
one can construct a non-commutativesector inside an extended phase space, in a relativistically
covariant way. More importantly, we have shown explicitly how this generalized map can
be reduced to the SWM under certain approximations. Interestingly, this extended space is
physically significant and well studied: it is the space of the relativistic spinning particle
[3, 10]. Hence it might be intuitively appealing to think that the NC spacetime is endowed
with spin degrees of freedom, as compared to the ordinary configuration space, since the spin
variables directly generate the NC2. The analogue of the gauge field is also identified inside
this phase space, without any need to consider external fields. This situation is to be contrasted
with the NC arising from the background magnetic field in the well-known Landau problem
[5] of a charge moving in a plane in the presence of a strong, perpendicular magnetic field, or
its string theory counterpart [6, 11].

We re-emphasize by mentioning that although the coordinate transformation derived here
agrees with the previously obtained diffeomorphism in [11] (as it should), the framework in
which it is rederived is entirely distinct from that in [11] since here we introduce a dynamical
extension of the configuration space intrinsically, whereas the one in [11] requires an external
gauge field. Regarding our identification of the SWM (to O(θ)) as a coordinate transformation
in a specific gauge in the Batalin–Tyutin extension of the spinning particle model, it should
be pointed out that the choice of a particular gauge does not restrict the analogy in any way.
Because of the gauge invariance of the model, other gauge choices will simply lead to gauge-
equivalent theories. In fact, one can generate dual systems obeying different gauge conditions
which are not non-commutative. Incidentally, this corroborates with the observation of Seiberg
and Witten [6] that the non-commutative description of a theory is not unique. The above
identification, to higher orders in θ , has not been attempted so far but the success in the O(θ)

1 The present analysis being classical, (non-)commutativity is to be interpreted in the sense of Poisson or Dirac
brackets.
2 This conjecture has been verified by us in [12], where we have explicitly constructed a non-commutative target
space on a two-dimensional manifold. The NC emerges from additional target space spin fields, besides the usual
spacetime coordinate degrees of freedom.
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case is encouraging. Indeed, O(θ) results are relevant in themselves since most of the analysis
in NC theories pertains to O(θ) computations.

The genesis of the SWM is the observation [6] that the non-commutativity in string
theory depends on the choice of the regularization scheme: it appears in, e.g., point-splitting
regularization whereas it does not show up in Pauli–Villars regularization. This feature,
among other things, has prompted Seiberg and Witten [6] to suggest the map connecting the
NC gauge fields and gauge transformation parameter to the ordinary gauge field and gauge
transformation parameter. The explicit form of the SWM [6], for Abelian gauge group, to the
first non-trivial order in the NC parameter θµν is the following,

λ̂(x) = λ(x) + 1
2θµνAν(x)∂µλ(x)

(6)
Âµ(x) = Aµ(x) + 1

2θσνAν(x)Fσµ(x) + 1
2θσνAν(x)∂σAµ(x).

The above relation (6) is an O(θ) solution of the general map [6],

Âµ(A + δλA) = Âµ(A) + δ̂λ̂Âµ(A) (7)

which is based on identifying gauge orbits in NC and ordinary spacetimes.
First let us show that it is indeed possible to rederive the SWM using geometric objects.

We rewrite the SWM (6) in the following way,

λ̂(x) = λ(x) + 1
2 {δf [λ(x)] − (λ(x ′) − λ(x))} = λ(x) + δf [λ(x)] (8)

Âµ(x) = Aµ(x) + {δf [Aµ(x)] − (Aµ(x ′) − Aµ(x))} = Aµ(x) + A′
µ(x) − Aµ(x ′). (9)

In the above we have defined

x ′
µ = xµ − fµ A′

µ(x ′) = ∂xν

∂x ′µ Aν(x) λ′(x ′) = λ(x)

(10)
f µ ≡ 1

2θµνAν.

Here f µ is the field-dependent spacetime translation parameter and δf constitutes the Lie
derivative connected to f µ,

δf [λ(x)] = λ′(x) − λ(x) = −(λ(x ′) − λ(x)) = f i∂iλ
(11)

δf [Aµ(x)] = A′
µ(x) − Aµ(x).

This shows that the NC gauge parameter (λ̂) and gauge field (Âµ) are derivable from the
ordinary one by making a field-dependent spacetime translation f µ [13]. One can check that
the NC gauge transformation of Âµ(x) is correctly reproduced by considering

δ̂Âµ(x) = δ(Aµ(x) + 1
2 θσνAν(x)Fσµ(x) + 1

2θσνAν(x)∂σ Aµ(x)) (12)

where δAµ(x) = ∂µλ(x) is the gauge transformation in ordinary spacetime. Hence, if
expressed in the form (9), the SWM (at least to O(θ)), can be derived in a geometrical way,
without introducing the original identification (7) obtained from the viewpoint of a matching
between NC and ordinary gauge-invariant sectors. Also note that the gauge field Aµ(x) is
treated here just as an ordinary vector field, without invoking any gauge theory properties.
This constitutes the first part of our result.

Returning to our starting premises, we are justified in making an identification between x̂µ

in (3)–(4) and x ′
µ introduced in (8)–(10), because this relation can connect NC and ordinary

spacetimes. Naively, a relation of the form, x ′
µ = xµ − fµ(x) cannot render the x ′-space

non-commutative, since the right-hand side of the equation apparently comprises commuting
objects only. In our subsequent discussion we will show how this surmise can be made
meaningful and return to this point at the end.
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We start by considering a larger space having inherent NC. Such a space, which at the
same time is physically appealing, is that of the Nambu–Goto model of relativistic spinning
particle [3, 10]. Here the situation is somewhat akin to the open string boundary NC such
that the role of Neveu–Schwarz field is played here by the spin degrees of freedom. The
Lagrangian of the model in 2+1 dimensions [3, 10] is

L =
[
M2uµuµ +

J 2

2
σµνσµν + MJεµνλuµσνλ

] 1
2

(13)

uµ = dxµ

dτ
σµν = 	ρ

µ d	ρν

dτ
= −σνµ

(14)
	ρ

µ	ρν = 	ρ
µ	νρ = gµν g00 = −gii = 1.

Here (xµ,	µν) is a Poincaré group element and also a set of dynamical variables of the theory.
In a Hamiltonian formulation, the conjugate momenta are

Pµ = ∂L

∂uµ

= L−1

[
M2uµ +

MJ

2
εµνλσνλ

]
Sµν = ∂L

∂σµν

= L−1

2
[J 2σµν + MJεµνλuλ].

(15)

The Poisson algebra of the above phase space degrees of freedom is

{Pµ, xν} = gµν {Pµ, P ν} = 0 {xµ, xν} = 0 {	0µ,	0ν} = 0 (16)

{Sµν, Sλσ } = Sµλgνσ − Sµσ gνλ + Sνσ gµλ − Sνλgµσ {	0µ, Sνσ } = 	0νgµσ − 	0σ gµν.

(17)

The full set of constraints is

�1 ≡ PµPµ − M2 ≈ 0 �2 ≡ SµνSµν − 2J 2 ≈ 0 (18)

�
µ

1 ≡ SµνPν �
µ

2 ≡ 	0µ − Pµ

M
µ = 0, 1, 2 (19)

out of which �1 and �2 give the mass and spin of the particle respectively3. In the Dirac
constraint analysis [8], these are termed as first-class constraints (FCC), having the property
that they commute with all the constraints on the constraint surface and generate gauge
transformations. The set �

µ

2 is put by hand [3], to restrict the number of angular coordinates.
The non-commuting set of constraints �µ

α , α = 1, 2, termed as second-class constraints
(SCC) [8], modify the Poisson brackets (16) to Dirac brackets [8], defined below for any two
generic variables A and B,

{A,B}DB = {A,B} − {
A,�µ

α

}
�αβ

µν

{
�ν

β,B
}

(20){
�µ

α ,�ν
β

} ≡ �
µν
αβ α, β = 1, 2 �

µν
αβ�

βγ

νλ = δγ
α δ

µ
λ . (21)

�
µν

αβ is non-vanishing even on the constraint surface. The main result relevant to us, is the
following Dirac bracket [3, 10],

{xµ, xν}DB = −Sµν

M2
→ {x̂µ, x̂ν} = θµν. (22)

3 Note that instead of �2 as above, one can equivalently use �2 ≡ εµνλSµνPλ − MJ , which incidentally defines the
Pauli–Lubanski scalar.
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This is the non-commutativity that occurs naturally in the spinning particle model. Our aim is
to express this NC coordinate x̂µ in the form x̂µ = xµ − fµ, with the identification between
θµν and Sµν . This is indicated in the last equality in (22). In the quantum theory, this will lead
to the NC spacetime (3).

This motivates us to the Batalin–Tyutin quantization [9] of the spinning particle [3]. For a
system of irreducible SCCs, in this formalism [9], the phase space is extended by introducing
additional BT variables, φα

a , obeying{
φα

µ, φβ
ν

} = ωαβ
µν = −ωβα

νµ ωαβ
µν = gµνε

αβ ε01 = 1 (23)

where the last expression is a simple choice for ωαβ
µν . The SCCs �µ

α are modified to �̃µ
α such

that they become FCC,

{
�̃µ

α(q, φ), �̃ν
β(q, φ)

} = 0 �̃µ
α (q, φ) =�µ

α(q) +
∞∑

n=1

�̃µ(n)
α (q, φ) �̃µ(n) ≈ O(φn)

(24)

with q denoting the original degrees of freedom. Let us introduce the gauge-invariant variables
f̃ (q) [9] corresponding to each f (q), so that

{
f̃ (q), �̃µ

α

} = 0

f̃ (q, φ) ≡ f (q̃) = f (q) +
∞∑

n=1

f̃ (q, φ)(n) (25)

which further satisfy [9],

{q1, q2}DB = q3 → {q̃1, q̃2} = q̃3 0̃ = 0. (26)

It is now clear that our target is to obtain x̃µ for xµ. Explicit expressions for �̃µ(n) and f̃ (n)

are derived in [9].
Before we plunge into the BT analysis, the reducibility of the SCCs �

µ

1 (i.e. Pµ�
µ

1 = 0)
[3, 10] is to be removed [14] by introducing a canonical pair of auxiliary variables φ and π

that satisfy {φ, π} = 1 and PB commute with the rest of the physical variables. The modified
SCCs that appear in the subsequent BT analysis are as shown below:

�
µ

1 ≡ SµνPν + k1P
µπ �

µ

2 ≡
(

	0µ − Pµ

M

)
+ k2

(
	0µ +

Pµ

M

)
φ (27)

where k1 and k2 denote two arbitrary parameters. Since the computations are exhaustively
done in [3] they are not repeated here. The results are the following:

x̃µ = xµ + [Sνµ + 2k1πgνµ](φ1)ν + R1µν(φ
2)ν + higher φ terms (28)

{x̃µ, x̃ν} = − S̃µν

M2
S̃µν = Sµν + R2(α)µνλφ

(α)λ + higher φ terms (29)

where the expressions for R are straightforward to obtain [3] but are not needed in the present
order of analysis. It should only be remembered that the R1-term in (28) is responsible for
the (φα)µ-free term −Sµν/(M

2) in the {x̃µ, x̃ν} bracket in (29). Thus the problem that we had
set out to solve has been addressed successfully in (28), which expresses the NC x̃µ in terms
of ordinary xµ and other variables [3].

Now comes the crucial part of identification of the present map with the SWM [6]. This
means in particular that we have to connect (28) to (10), since as we have shown before, (10)
is capable of generating the SWM [6]. We exploit the freedom of choosing gauges according
to our convenience, since in the BT extended space �̃µ

α are FCCs. For instance, the so-called
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unitary gauge, φ
µ

1 = 0, φ
µ

2 = 0, trivially converts the system back to its original form before
the BT extension. Let us choose the following non-trivial gauge,

φ
µ

1 = M2

2
Aµ(x) φ

µ

2 = 0 (30)

where Aµ(x) is some function of xµ, to be identified with the gauge field. Let us also work with
terms linear in Aµ(x). Identifying S̃µν/(M)2 = θµν we end up with the cherished mapping,

x̃µ = xµ − 1
2θµνA

ν(x) + higher A(x) terms (31)

{x̃µ, x̃ν}DB = θµν + higher A(x) terms. (32)

Note that in the above relations (31), (32), we have dropped the terms containing k1, an arbitrary
parameter [3], considering it to be very small. Also in (32) the Dirac bracket reappears since
the system is gauge fixed and hence has SCCs. This constitutes the second part of our result.

Finally, two points are to be noted. Firstly, the non-commutativity present here does not
break Lorentz invariance since there appears no constant parameter with non-trivial Lorentz
index to start with. The violation will appear only in the identification of S̃µν with (constant)
θµν . Secondly, (28) truly expresses the NC spacetime x̃µ in terms of ordinary spacetime xµ.
But xµ becomes NC owing to the Dirac brackets induced by the particular gauge that we fixed
in order to reduce our results to the SWM. Obviously, in general, there is no need to fix this
particular gauge. This refers to the comment below (12).

To conclude, we have shown that it is possible to view the (Abelian O(θ)) Seiberg–
Witten map as a coordinate transformation involving field-dependent parameters. The idea of
equivalence between gauge orbits in non-commutative and ordinary spacetimes, which was
crucial in the original derivation [6], is not applied here. It has been explicitly demonstrated
that a non-commutative spacetime sector can be constructed in the Batalin–Tyutin extension
of the relativistic spinning particle model [3]. Finally, the above-mentioned transformation
and subsequently a direct connection with the Seiberg–Witten map are also generated in this
model. It emerges from the present work that non-commutative spacetime is endowed with
spin degrees of freedom, as compared to the ordinary spacetime [12].
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